pointwise discontinuous - significado y definición. Qué es pointwise discontinuous
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es pointwise discontinuous - definición

APPLYING OPERATIONS TO FUNCTIONS IN TERMS OF VALUES FOR EACH INPUT "POINT"
Pointwise order; Pointwise addition; Pointwise operation; Componentwise operation
  • ln]] (red). The highlighted vertical slice shows the computation at the point ''x''=2π.

Discontinuous linear map         
A linear functional which is not continuous; Non-continuous linear functional; A linear map which is not continuous; Linear operator which is not continuous; Discontinuous linear functional; Discontinuous linear operator; Discontinuous linear function; Linear discontinuous map; General existence theorem of discontinuous maps
In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions (see linear approximation). If the spaces involved are also topological spaces (that is, topological vector spaces), then it makes sense to ask whether all linear maps are continuous.
Pointwise         
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition.
Pointwise convergence         
NOTION OF CONVERGENCE IN MATHEMATICS
Topology of pointwise convergence; Almost everywhere convergence; Almost-everywhere convergence; Converge Pointwise; Pointwise convergent sequence
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared.

Wikipedia

Pointwise

In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f ( x ) {\displaystyle f(x)} of some function f . {\displaystyle f.} An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.